Virtual Learning Factory Toolkit
  • Virtual Learning Factory Toolkit
  • VLF Knowledge Base
    • Factory Data Model
      • OWL Classes
      • SPARQL Queries
      • SPARQL Updates
    • Instantiation of Factory Models
      • Assets
        • Assets in Spreadsheet
        • Assets in JSON
        • Assets in Ontology
      • 3D Models of Assets
        • 3D Models for Virtual Reality
      • Statechart
      • Animations
      • Data Repositories
        • Local Repository
        • Remote Repository
  • VLF Tools and Libraries
    • OntoGui
      • Modules
        • Control Panel
        • Individual Manager
        • System Design
        • Utilities
      • Personalization
    • OntoGuiWeb
      • Modules
        • Control Panel
        • SPARQL
        • Graphs OWL
        • Utilities
        • Asset Design
        • System Design
        • System Control
        • Performance Evaluation
        • MQTT Sync
        • Virtual Environment
        • Graphs Eng
        • StateChart
      • Personalization
    • jsimIO
      • How to start
      • JMT Overview
        • JSim
          • Model generation
          • Launch of the simulation
          • Reporting
        • Bibliography
    • VEB.js
      • Functionalities
      • Input/Output files
      • Integration with other software tools
      • Advanced Users
    • ApertusVR
    • MTM
      • How to start
      • Formalise the process
      • Prepare input data
      • Execution and results
    • MOST
      • How to start
      • Formalise the process
      • Prepare input data
      • Execution and results
    • RULA
      • How to start
      • Formalise the process
      • Prepare input data
      • Execution and results
    • OCRA
      • How to start
      • Prepare input data
      • Execution and results
  • Use Cases
    • Automated Assembly Line
    • Assets and Animations
    • Modelling of Factory Assets
      • Modelling of an Assembled Product
      • Modelling of a Workstation
      • 3D Modelling of a Workstation for Virtual Reality
    • Process Modelling
      • Modelling an Assembly Process
    • Modelling of a manufacturing system
      • Modelling in OntoGui
      • Modelling a Job Shop using OntoGui
      • Modelling of a Flow Shop using OntoGui
      • Modelling a Hybrid Flow Shop using OntoGui
      • Modelling an assembly system using OntoGui
    • Performance evaluation using jsimIO
      • Performance evaluation of a manufacturing system
        • Performance evaluation in Jsim
        • Performance evaluation of a Flow Shop using Jsim
        • Performance Evaluation of a Job Shop using JSim
        • Performance evaluation of a Hybrid Flow Shop using Jsim
        • Performance evaluation of an assembly system using Jsim
      • jsimIO Assembly
      • jsimIO Automatic
      • jsimIO Production
  • Classworks
  • Advanced Features
    • JMT model
      • Automatic generation of a JMT model
      • Automatic generation of animations
    • Enabling technologies
      • Node-RED
        • Node-RED tutorial
      • RDF libraries
Powered by GitBook
On this page
  • Case Description
  • Formal model
  • Performance Evaluation

Was this helpful?

  1. Use Cases
  2. Performance evaluation using jsimIO
  3. Performance evaluation of a manufacturing system

Performance Evaluation of a Job Shop using JSim

PreviousPerformance evaluation of a Flow Shop using JsimNextPerformance evaluation of a Hybrid Flow Shop using Jsim

Last updated 3 years ago

Was this helpful?

Case Description

The job shop is composed by 5 machines and 5 buffers. Each buffer is associated to the machine in front of it (e.g. B1 is associated only with M1). All the machines are physically connected each other and the path of a part type inside the system is defined by its production process. The processing time of each machine depends on the part (class) to be worked.

Formal model

Performance Evaluation

  • Open JSIMgraph from the various tools in the home panel of JMT software.

  • Select the source and sink icons in the toolbar and then place it in the workspace.

Production data
Mean times to failure and to repair for each machine
Buffer sizes for each machine
Formal model
JMT - Home panel
Source and sink nodes
System model