Virtual Learning Factory Toolkit
  • Virtual Learning Factory Toolkit
  • VLF Knowledge Base
    • Factory Data Model
      • OWL Classes
      • SPARQL Queries
      • SPARQL Updates
    • Instantiation of Factory Models
      • Assets
        • Assets in Spreadsheet
        • Assets in JSON
        • Assets in Ontology
      • 3D Models of Assets
        • 3D Models for Virtual Reality
      • Statechart
      • Animations
      • Data Repositories
        • Local Repository
        • Remote Repository
  • VLF Tools and Libraries
    • OntoGui
      • Modules
        • Control Panel
        • Individual Manager
        • System Design
        • Utilities
      • Personalization
    • OntoGuiWeb
      • Modules
        • Control Panel
        • SPARQL
        • Graphs OWL
        • Utilities
        • Asset Design
        • System Design
        • System Control
        • Performance Evaluation
        • MQTT Sync
        • Virtual Environment
        • Graphs Eng
        • StateChart
      • Personalization
    • jsimIO
      • How to start
      • JMT Overview
        • JSim
          • Model generation
          • Launch of the simulation
          • Reporting
        • Bibliography
    • VEB.js
      • Functionalities
      • Input/Output files
      • Integration with other software tools
      • Advanced Users
    • ApertusVR
    • MTM
      • How to start
      • Formalise the process
      • Prepare input data
      • Execution and results
    • MOST
      • How to start
      • Formalise the process
      • Prepare input data
      • Execution and results
    • RULA
      • How to start
      • Formalise the process
      • Prepare input data
      • Execution and results
    • OCRA
      • How to start
      • Prepare input data
      • Execution and results
  • Use Cases
    • Automated Assembly Line
    • Assets and Animations
    • Modelling of Factory Assets
      • Modelling of an Assembled Product
      • Modelling of a Workstation
      • 3D Modelling of a Workstation for Virtual Reality
    • Process Modelling
      • Modelling an Assembly Process
    • Modelling of a manufacturing system
      • Modelling in OntoGui
      • Modelling a Job Shop using OntoGui
      • Modelling of a Flow Shop using OntoGui
      • Modelling a Hybrid Flow Shop using OntoGui
      • Modelling an assembly system using OntoGui
    • Performance evaluation using jsimIO
      • Performance evaluation of a manufacturing system
        • Performance evaluation in Jsim
        • Performance evaluation of a Flow Shop using Jsim
        • Performance Evaluation of a Job Shop using JSim
        • Performance evaluation of a Hybrid Flow Shop using Jsim
        • Performance evaluation of an assembly system using Jsim
      • jsimIO Assembly
      • jsimIO Automatic
      • jsimIO Production
  • Classworks
  • Advanced Features
    • JMT model
      • Automatic generation of a JMT model
      • Automatic generation of animations
    • Enabling technologies
      • Node-RED
        • Node-RED tutorial
      • RDF libraries
Powered by GitBook
On this page

Was this helpful?

  1. Use Cases
  2. Process Modelling

Modelling an Assembly Process

PreviousProcess ModellingNextModelling of a manufacturing system

Last updated 1 year ago

Was this helpful?

The hinge is composed by two main blocks. The first block features a “Wing” as the main component. That’s the part that usually gets fixed to the internal wall of a piece of furniture through the “Clip”, that is the component that allows to place an external screw (not included in this assembly) for this purpose. The “Clip” is kept in position on the “Wing” by means of a “Screw”. The second block, called “Box” comes preassembled downstream. This is the subassembly that gets fixed by means of two screws to the door leaf. The two blocks are connected by two metal bodies (“Connector 1”, “Connector 2”) through a “Hook”, to constrain the rotation of the “Wing” around the relative pins. In order to improve dampening, a spiral “Spring” is also inserted in this area.

Hinge assembly sequence